pub struct Sharpness(pub f32);
Expand description
A value of 0.0 means no sharpening. The minimum value means minimal sharpening, and shall be 0.0 unless the camera can’t disable sharpening completely. The default value shall give a “reasonable” level of sharpening, suitable for most use cases. The maximum value may apply extremely high levels of sharpening, higher than anyone could reasonably want. Negative values are not allowed. Note also that sharpening is not applied to raw streams.
Tuple Fields§
§0: f32
Methods from Deref<Target = f32>§
pub const RADIX: u32 = 2u32
pub const MANTISSA_DIGITS: u32 = 24u32
pub const DIGITS: u32 = 6u32
pub const EPSILON: f32 = 1.1920929E-7f32
pub const MIN: f32 = -3.40282347E+38f32
pub const MIN_POSITIVE: f32 = 1.17549435E-38f32
pub const MAX: f32 = 3.40282347E+38f32
pub const MIN_EXP: i32 = -125i32
pub const MAX_EXP: i32 = 128i32
pub const MIN_10_EXP: i32 = -37i32
pub const MAX_10_EXP: i32 = 38i32
pub const NAN: f32 = NaN_f32
pub const INFINITY: f32 = +Inf_f32
pub const NEG_INFINITY: f32 = -Inf_f32
1.62.0 · sourcepub fn total_cmp(&self, other: &f32) -> Ordering
pub fn total_cmp(&self, other: &f32) -> Ordering
Returns the ordering between self
and other
.
Unlike the standard partial comparison between floating point numbers,
this comparison always produces an ordering in accordance to
the totalOrder
predicate as defined in the IEEE 754 (2008 revision)
floating point standard. The values are ordered in the following sequence:
- negative quiet NaN
- negative signaling NaN
- negative infinity
- negative numbers
- negative subnormal numbers
- negative zero
- positive zero
- positive subnormal numbers
- positive numbers
- positive infinity
- positive signaling NaN
- positive quiet NaN.
The ordering established by this function does not always agree with the
PartialOrd
and PartialEq
implementations of f32
. For example,
they consider negative and positive zero equal, while total_cmp
doesn’t.
The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.
§Example
struct GoodBoy {
name: String,
weight: f32,
}
let mut bois = vec![
GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];
bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
// `f32::NAN` could be positive or negative, which will affect the sort order.
if f32::NAN.is_sign_negative() {
assert!(bois.into_iter().map(|b| b.weight)
.zip([f32::NAN, -5.0, 0.1, 10.0, 99.0, f32::INFINITY].iter())
.all(|(a, b)| a.to_bits() == b.to_bits()))
} else {
assert!(bois.into_iter().map(|b| b.weight)
.zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter())
.all(|(a, b)| a.to_bits() == b.to_bits()))
}
Trait Implementations§
source§impl From<Sharpness> for ControlValue
impl From<Sharpness> for ControlValue
source§impl TryFrom<ControlValue> for Sharpness
impl TryFrom<ControlValue> for Sharpness
source§type Error = ControlValueError
type Error = ControlValueError
impl Control for Sharpness
Auto Trait Implementations§
impl Freeze for Sharpness
impl RefUnwindSafe for Sharpness
impl Send for Sharpness
impl Sync for Sharpness
impl Unpin for Sharpness
impl UnwindSafe for Sharpness
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)