Struct libcamera::controls::Lux

source ·
pub struct Lux(pub f32);
Expand description

Report an estimate of the current illuminance level in lux. The Lux control can only be returned in metadata.

Tuple Fields§

§0: f32

Methods from Deref<Target = f32>§

1.43.0 · source

pub const RADIX: u32 = 2u32

1.43.0 · source

pub const MANTISSA_DIGITS: u32 = 24u32

1.43.0 · source

pub const DIGITS: u32 = 6u32

1.43.0 · source

pub const EPSILON: f32 = 1.1920929E-7f32

1.43.0 · source

pub const MIN: f32 = -3.40282347E+38f32

1.43.0 · source

pub const MIN_POSITIVE: f32 = 1.17549435E-38f32

1.43.0 · source

pub const MAX: f32 = 3.40282347E+38f32

1.43.0 · source

pub const MIN_EXP: i32 = -125i32

1.43.0 · source

pub const MAX_EXP: i32 = 128i32

1.43.0 · source

pub const MIN_10_EXP: i32 = -37i32

1.43.0 · source

pub const MAX_10_EXP: i32 = 38i32

1.43.0 · source

pub const NAN: f32 = NaNf32

1.43.0 · source

pub const INFINITY: f32 = +Inff32

1.43.0 · source

pub const NEG_INFINITY: f32 = -Inff32

1.62.0 · source

pub fn total_cmp(&self, other: &f32) -> Ordering

Return the ordering between self and other.

Unlike the standard partial comparison between floating point numbers, this comparison always produces an ordering in accordance to the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard. The values are ordered in the following sequence:

  • negative quiet NaN
  • negative signaling NaN
  • negative infinity
  • negative numbers
  • negative subnormal numbers
  • negative zero
  • positive zero
  • positive subnormal numbers
  • positive numbers
  • positive infinity
  • positive signaling NaN
  • positive quiet NaN.

The ordering established by this function does not always agree with the PartialOrd and PartialEq implementations of f32. For example, they consider negative and positive zero equal, while total_cmp doesn’t.

The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.

Example
struct GoodBoy {
    name: String,
    weight: f32,
}

let mut bois = vec![
    GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
    GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
    GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
    GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
    GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
    GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];

bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));

Trait Implementations§

source§

impl Clone for Lux

source§

fn clone(&self) -> Lux

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl ControlEntry for Lux

source§

const ID: u32 = 11u32

source§

impl Debug for Lux

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Deref for Lux

§

type Target = f32

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl DerefMut for Lux

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl From<Lux> for ControlValue

source§

fn from(val: Lux) -> Self

Converts to this type from the input type.
source§

impl TryFrom<ControlValue> for Lux

§

type Error = ControlValueError

The type returned in the event of a conversion error.
source§

fn try_from(value: ControlValue) -> Result<Self, Self::Error>

Performs the conversion.
source§

impl Control for Lux

Auto Trait Implementations§

§

impl RefUnwindSafe for Lux

§

impl Send for Lux

§

impl Sync for Lux

§

impl Unpin for Lux

§

impl UnwindSafe for Lux

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> DynControlEntry for Twhere T: ControlEntry,

source§

fn id(&self) -> u32

source§

fn value(&self) -> ControlValue

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.